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Abstract

JPL’s Remote Interactive Visualization and Analysis System (RIVA)  is
described in detail. RIVA’S kernel is a highly scalable perspwtive  renderer
tailored especially for the demands of large datasets beyond the sensible
reach of workstations. The algorithmic details of this renderer are
deseribed, particularly the aspects key to achieving the algorithm’s overall
scalability. The paper summarizes the performance achieved for machine
sizes up to mom than S00 nodes and for initial input imagcherrain  bases of
up to a gigabyte.

The RIVA system integrates workstation graphics, massively parallel
computing technology, and gigabit communication networks to provide a
flexible interactive environment for scientific data perusal, analysis and
visualization. Early experience with using RIVA to interactively explore
multivariate datasets is reported and some example results given.

Keywords: 3-D perspective terrain rendering, forward mapping,
scientific visualization, massively parallel processor (MPP)

1. Introduction

The goal of the Remote Interactive Visualization and Analysis System (RIVA) is to make
possible the interactive exploration of the largest of NASA’s scientific datascts using
high speed networking and parallel supercomputing technology. To achieve this goal, it
must be possible for an individual investigator to command that perhaps 1-100 gigabytes
of data bc brought online from his workstation and activated for fully interactive
exploration, viewing, and analysis.

Accordingly, the RIVA Project was conceived to carefully construct some of the key
elements needed and gain early experience with the use of large scale computing and
associated high speed networking facilities. At Calteeh/JPI.  two massively parallel
processors (MPP’s) are available for use - a 256 processor Cray T3D and a 512 node
processor Intel Paragon. The CASA gigabit network interconnects them and provides a
photonic based extension network to individual laboratories at several locations around
JPL and the Campus. With these facilities, it is, for the first time, possible to remotely
command highly data intensive datdimage  manipulation and have the results delivered
instantaneously to the investigator’s work station or frame buffer.

To do this, RIVA is built around a three dimensional perspective terrain renderer as a
kernel and surrounded with an orchestrated set of capabilities allowing the seleetion of
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data (sets), the viewing point, and, if multiple datasets are to be rendered and viewed
simultaneously, the relative translucence of each overlay surface.

The perspective renderer has been carefully designed for high performance and scalable
operation. Scalable in this context means both: 1) nearly linear performance gain with
increasing number of processors for a jixed  size of the desired output image and 2). nearly
constant performance with an increasing overall input database siw.  The renderer is a
forward mapping type where input dataset points are individually mapped to the focal
plane. Compared to the inverse method of casting rays from the focal plane to the surface
[2,4], this approach lends itself naturally to the e~sy decomposition of the input dataset
across the nodes of the MPP. But the rendered picture emerges spread rather randomly
across these same nodes. A machine wide sort, reordering the local output pixels into
focal plane order and essentially transitioning  to an output frame decomposition scheme
is then necessary. We have found that on balance, this hybrid decomposition sehemc
works very well to promote scalability and suffers only a small associated penalty of
decomposition transition.

But RIVA is not just a parallel n.mderer exploring and testing various rendering
techniques. It is, as we have already described, a tool for interactive scientific data base
exploration and visualization. In this sense it is a system as shown in Figure 1. The data
Navigator resides on a SGI workstation which hosts a low rmolution copy of the dataset
to be investigated. Using a GUI based on SGI’S Open Inventor, the investigator selects
the desired view he wishes; this viewpoint is transmitted to the supcrcomputer. As shown
this is currently either the T3D or Paragon which contains a full resolution copy of the
dataset.  There the rendering(s) is done and the resultant full resolution image transmitted
back over the CASA gigabit network and into a HiPI’I frame buffer placed next to the
workstation.
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Figure 1: RIVA System Architecture

2. Algorithm

The kernel of the RIVA system is a parallel terrain renderer running on distributed-
mcmory parallel supercornputcrs.  The renderer produces 3-D perspective views of terrain
using (mosaics of) remote sensing Earth or planetary images with co-registered digital
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elevation data. Because the underlying geometric model is that of a sphere, the mnde~r
can accommodate global datasets; accordingly we refer to this renderer as the whole earth
renderer.

The whole earth renderer uses a forward-mapping algorithm with object space
decomposition. That is, each data input point is mapped to the output focal plane with z
buffering used for hidden surface arbitration. The curmt implementation is an evolution
of the ray identification algorithm reported earlier[ 1 ], but differs from it in many respects:
1. it supports both global datasets and regular grid 2-11 surface datasets, 2. it adopts a
finer grain data decomposition scheme - tile decomposition - to achieve better load
balancing ,3. it performs dynamic data pyramiding for better performance, 4. it uses a
sparse output image structure for more efficient memory utilization and less
communication overhead, and 5. it renders multiple input datasets of different resolutions
and different formats

Other than forward mapping, th~ different approaches have been u.scd for terrain
rendering. Representing terrain as a polygon mesh and using hardware to do polygon
rendering and texture mapping is a common approach used in advanced graphic
workstations. Ray casting has been used by Jet Propulsion Laboratory to produce
animated fly-by movies [2], but parallelization  of a my-casting renderer on a distributed
memory MPP requires input data shuffling and complicated data management [4]. The
data shuffling could be very costly with the sizfi of the input data we are handling. Using
shear-warp operations to achieve fast pcrspe~tive  terrain rendering [3,5] can not be
applied to the spherical data model directly. Besides, without hardware support for fast
matrix transposition, the shear-warp approach will not perform decently on a distributed
memory MPP machine.

2.1 Forward Mapping

Mapping an input pixel to the output focal plane is done by first transforming the input
pixel from the world coordinate to the image coordinate, then applying a 2-D scaling to

the result. The image coordinate uses the camera position ~M the origin, and (L,;,:)
defining the three axes. (ii, $) are unit vectors defining the focal plane and ~ is the unit
vector along the camera direction or the normal of the focal plane (Figure 2). Let 1 be
an input pixel in the input dataset and assume all the vectors and points are represented in
world coordinates. The transformation of Z to the image coordinate is the dot project of
vector & with three unit vectors (L, f, 2). The projection of = to the focal plane (u, v)
in the image coordinates can bc calculated using equation (1) where $is the focal length
of the camera or the distance from the camera to the center of the focal plane.
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Figfire 2. The geometry of forward-mapping
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2.2 Data Representation

(1)

Early in the design qf the renderer it was recognized that, if very large datasets were to be
supported, it would be necessary to change the underlying geometrical model away from
the flat surface or tabletop model used in [1] and to a global spherical model more
representative of the object being studied. The first problem encountered in doing this is
the mapping of the image data to be rendered into an efficient two dimensional data
structure. The two most common projections have been considered: the cylindrical
equidistant projection and the Sanson-Flamsteed  sinusoidal projection. The cylindrical
equidistant projection maps longitude lines onto equally spaced vertical chart lines and
latitude lines onto equally spaced horizontal chart lines. The features close to the polar
regions are stretched, thus distorted in the map; but the mapping from a grid point on the
map to its world coordinate is a straightforward scaling function.

On the globe, the relative longitude scale shifts as a function of latitude. Assuming the
scale ratio for two adjacent longitude lines at the quator  is 1, then the scale decreases to
zero at either pole; the ratio is cos (#I, where @ is the latitude. By applying cos @ along
the x axis of a cylindrical projection map, the new map maintains constant area with the
globe. Because of the sinusoidal shape of the map boundary, this projection is called the
Sanson-Flamsteed sinusoidal equal-area projection. Projection from a grid point on the
map to its world coordinate is a simple transformation
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a=s”xfcos(b
(2)

where (A, @) is the world coordinate in longitude, latitude for the data grid point (x, y),
and s is the number of grid points/radian at the equator.

An image in the sinusoidal equal-a~a  projection requires significantly less memory than
does cylindrical projection. The total memory ~uircd  for the former is

yielding memory savings of (n – 2)/7r = 36.34%.

The whole earth renderer supports both the cylindrical and sinusoidal projections. For a
large global dataset, it is mom sensible to conserve memory by using the sinusoidal
projection, and pay the penalty in transformation time. The cosine of latitude can be
derived with a table lookup, but one extra division is required for each grid point. The
sinusoidal projection does not save as much memory for datasets covering a small region
of the globe; in this case it is better to use the cylindrical projection.

Internally, the renderer uses a 3-D Cartesian system for the world coordinates. The origin
is at the center of the sphere, with the x and y axes lying in the equatorial plane and
pointing to the prime meridian and 90”E respectively; and the z axis pointing to the North
Pole. The conversion from a data grid point (x, y,z) to its world coordinate (X, Y, Z) is:

X=(r+z)cosacos(j

Y=(r+z)sinAcos@ (3)

Z = (r+z)sin@

where z is the altitude, r is the radius of the reference. sphere and (A, ~) can be derived
from (x,y) using equation (2).

2.3 Data Decomposition

Input space decomposition is ideal for forward mapping. The input pixels can be
projected into the image space in parallel in any order. If the input dataset is decomposed
into the distributed memory of the parallel processors, the pixel projection, rasterization,
and local hidden surface arbitration can be done locally and concurrently in each
processor without any data exchange. Communication is only required in the
transitioning to an image space data decomposition in order to merge the partial images
and perform the final hidden surface arbitration. Since the input space we are dealing
with is many orders of magnitude bigger than the image space, the communication cost
for shuffling the partial image is much less than that of shuffling the input pixels.

Our algorithm uses static input space decomposition, In order to achieve good load
balancing, an interleaved tile decomposition with a small tile size is used. The tile
decomposition of a global sinusoidal dataset is depicted in Figure 3. The tiles are aligned
horizontally, but not vertically. Each tile overlaps its boundaries with its neighboring
tiles to avoid exchanging boundary information needed for the detailed painting of the
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output raster. The tiles are dealt to each processor cyclically, guaranteeing a random
distribution of the tiles over the parallel processors, and thus a good load balance for any
arbitrary viewpoint. The choice of the tile size is a tradeoff of memory/computation
overhead vs. load balancing. For a square tile of mm pixels, it requires (2n- 1 ) extra pixels
to store the boundary data and an extra (2n - I)/(n  o n) = 2/n computation overhead.
When n is 64, a tile size we have experimentally determined to be near optimum, there is
a 39Z0 memory and computation overhead. It is noted that smaller tiles also imply higher
computation cost in both filtering and pyramiding, operations discussed in the following
sections.

1-1-1

Figure 3. Interleaved tile decomposition of the input dataset

2.4 Filtering

Filtering is the first acceleration step in the whole earth rendemx.  The purpose of filtering
is to efficiently eliminate the pixels in the input space that can be determined to fall
outside the field of view of a given viewpoint. In the previous approach [1], a footprint
area was formed by analytically intersecting rays from the viewpoint through the corners
of the focal plane to the surface of zero elevation. Then a rectangular bounding box was
determined using that footprint and the projection of the viewpoint in the terrain surface.
Anything outside the bounding box was excluded in the field of view of this particular
viewpoint. This footprint approach, while straightforward for tablctop  renderers, is much
more difficult when using a spherical data model. For example, when rendering a distant
view that encompasses a whole hemisphere, none of the corner rays intersects the dataset
at all! Moreover, bccau.sc of the quadratic nature of the underlying surface, the general
ray intersects twice, once on the front side and once on the back surface. These and other
difficulties led us to adopt quite a different approach to filtering for the whole earth
renderer.

(). - The approach used is to inspect the location of each tile to determine if it is possiblq for
any of its pixels ,t~ bc needed for the final image. Two tests have been devised to make
this dcterminatibn. The horizon filter determines whether a tile is out of sight over the
horizon, and the tile filter determines whether any part of the tile is included in the focal
plane. Both filters are conservative: including a tile in the detailed computations when
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none of its pixels am in the final image is more acceptable than excluding a tile that was
needed.

Horizon Filter

In Figure 4, a viewpoint O is distance h above the zm o elevation surface of the sphere.
The furthest point it is possible to see from this viewpoint is one at the maximum
elevation a along the line of sight tangent to the zero (or minimum) elevation surface P.
Q is such a point.

(4)

where r is the radius of the zero-elevation sphere, a is the maximal elevation of the data
above the sphere and h is the distance between the viewpoint and the mro  elevation
surface. For each tile, the distance is computed from the viewpoint to the central pixel of
the tile with an elevation the average of the highest and the lowest pixels in the tile. If the
distance is greater than ~~, the tile is excluded from the field of view. Even in the
limiting case of large h, this filter will eliminate almost half of the tiles. For a more
interesting clo.sc-in view, even the largest datasets arc brought to very manageable data
sizes with but little computational overhead.

b

2f7r

Figure 4. The horizon geometry for a lumpy sphere

Tile Filter

The tile filter is applied to the tiles surviving the horizon test just above and is more in the
spirit of the original footprint filter used in [1]. First, the four corners of a tile arc
projected to the image space. If any of the corners fall inside the focal plane, the tile is
admitted. If this test fails, one final computation is performed before final elimination is
dctcrmincd. This final check visualizes the tile as a rectangular volume which encloses
not only the latitudchngitude  excursions of the tile boundaries, but bounds this volume
by the maximum and minimum height elevations for that particular tile. This final check
maps the center point of this volume to the focal plane and calculates first order effects of
excursions in latitude, longitude and elevation. This helps guard against the possibility
that all four corners miss but some interior regions are really in the picture.
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In Figure 2, let Z be the central pixel of a given tile with an elevation the average of the
highest and the lowest points within that tile. The cosine of the angle between TX and

the view direction ~ can be calculated by the dot product of the unit vector}= m/llm~

and 2. In equation (5), we add to the basic dot product three increments that represent
the linear change in the dot product in going from the average altitude to either the
highest or the lowest point, and the gradient change across the latitude and the longitude
width of the tile. This incremented sum is then compared with the cosine of the field of
view to determine acceptance.

(5)

where am,  and a~in are the highest and the lowest elevation of the tile, and A@/2, ti/2
are the semi latitude and longitude widths of the tile. The three partial derivatives can be
derived using equations (6) to (8)

(6)

(8)

where ~ is the unit vector from the origin of the world coordinate to the central pixel z.

Although the tile filter involves complicated computations and has to be repeated for
every tile, the result is potentially more efficient than the original footprint filter. The
resulting bounding area covered by the accepted tiles need not necessarily be rectangular
and could conform better to the actual footprint.

The horizon filter and the tile filter can be computed concurrently in all the parallel ~, ~
,,jj,. processors. The compute time is proportional to the number of tiles in each processor,

thus ~$ linearly scaled down with}number  of processors. In our test case, for a tile size of
64x64  pixels, the filtering time is’less than 1% of the total rendcnng  time.

2.5 Data Pyramiding

Data pyramiding is the second acceleration step used in the whole earth renderer. Data
pyramiding is an image scaling technique that has been used in terrain rendering to
reduce computation and eliminate aliasing  problems [2] [3]. For a large input dataset with
hundreds or even thousands of mega pixels, it is important to be able to view the data at
different levels  of detail, from a perspective that overlooks the entire datmet down to a
small area for a close look of the terrain. From an overlook perspcxtive,  the scale from
the input space to the image space could be hundreds to 1, in which case there is no need
to render the input data at its highest resolution. An input data pyramid is built by
repeatedly dividing the input image by a factor of 2 in each dimension. The input
pyramid may be pre-generated and stored in memory. A multi-level input pyramid
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requires about 113 more memory than the single highest resolution image, which could
bc significant when trying to fit large datasets to any particular machine. Alternatively,
the program can generate the input pyramid on the fly. The whole earth rvnderer
currently uses the latter approach.

In the filtering step, each processor constructs a list of tiles that were accepted for this
particular viewpoint. A pyramid level is then computed for each tile in the list. A
pyramid level of p implies that the tile will bc divided by 2P-] in each dimension; thus, a
p of 1 implies no pyramiding; of 2, that the tile will be divided in half in each dimension;
of 3, that the tile will be divided in fourths in each dimension, and so on.

The pyramid level is computed as follows: 1. project the four corner pixels of a given tile
to the focal plane to form a footprint of the tile, 2. calculate the area of the bounding
rectangular of the footprint and find the ratio of the area to the size of the tile, 3. use the
square root of the ratio to determine the pyramid level for this tile. Once the pyramid
level is determined, the left upper corner pixel of a n x n pixel-square (where n = 2P-1)
will be forward-mapped to the focal plane and painted the average color of the n x n
pixels in this square. The neighboring tiles maybe rcndcrcd at different pyramid lCVCIS
while still preserving continuity in the image space because the corner pixel of a pixel-
.squarc is used to do the forward mapping and the boundary row and column of two
adjacent tiles arc available to both tiles.

Smaller tiles yield better load balancing, which can improve the speed significantly for
close-up views; however, the number of pyramid levels is bounded by the size of the tile.
For a tile of 64x64 pixels, the maximal pyramid level  is logz 64 = 6. Therefore, it may
take longer to render a distant perspective if the tile size is smaller. Smaller tiles also
increase storage and computation overhead for the duplicated pixels  at the tile boundary,
and increase the amount of filtering. In our experience, tiles of 64x64 pixels arc a good
balance.

2.6 Image Compositing

In our previous approach [1], a binary-tree merging algorithm is used to create the final
image. The binary-tree merging algorithm is a parallel merging algorithm that takes
log2 n steps to swap the partial images for n processors. The final image is evenly
distributed over the parallel processors with each processor holding l/n th of the total
lines of the final image. In the original approach, each processor allocates a memory
space for the entire output image. The local node renders into this memory space,
painting pixels into what will be their final locations. This organization, while
convenient and while it produced good results quickly, was fatal in two regards.

First, although the partial output image in each node gets sparser as the number of
processors increases, the memory used and the total message size from each processor
remains constant. Double the number of processors and the total communication time for
image merger gets slightly longer. Thus as the number of processors increases and
computation time diminishes, communications will quickly come to dominate the overall
rendering time and prohibit the desired scalability. With current commercial machines
such as the Paragon or T3D, only about 32 nodes could be effectively employed before
communications sensibly blocked further speed up. Second, since  each node needs to
reserve a block of memory equal to the resultant picture size, very high fidelity frames
become impossible due to lack of per node memory regardless of the number of
processors employed.
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In the whole earth renderer, a distributed output data structure is designed to store the
sparse output image being generated in each node. The new data structure has three
features: 1. only the output pixels being painted in the local processor are stored, 2.
random access to this data structure is optimized, and 3. the memory management cost is
minimized. The seeond feature is important because the forward mapping is done in the
order of input tiles; therefore, there is no predictable access order to the output image.
Moreover, one output pixel may be projected by multiple input pixels, and thus be
accessed more than once.

The data structure for the output image is an array of (raster) line pointers. The length of
the array is the number of lines of the final image. Each pointer in the array points to a
sorted doubly-linked list of pixel blocks representing one output line. The pointer is null
if no pixel in this line is painted in the current processor. Each entry of the doubly-linked
list has a header and a block of contiguous output pixels. The header contains the first x
position of the pixel block, and the blocks arc sorted by this x value. Each output pixel in
the pixel block is a four-tuple (r, g, b, z) where (r, g, b) is the color of this pixel and z is
the distance from the viewpoint to the closest input pixel that is mapped to this output
pixel. The block size is fixed and is 20 or 24 in our current implementations. The header
of each linked list has three pointers, one pointing to the first block, the second to the last
block and the last to the block that was last accessed. Figure 5 depicts the data structure
for the sparse output image.

When an output pixel is painted, the linked list for its line is traversed starting from the
last accessed block. If no block contains this pixel, a new pixel block is allocated and
inserted into the linked list. If the block exists but the pixel has nc)t yet been painted, the
color and the z value of the input pixel is assigned to this output pixel. If the pixel has
been painted, the stored z value is compared with the new z value. The pixel is repainted
if the new z value is smaller than the stored one; the new pixel’s color is blended into the
output pixel if the two z values are close to each other; the new pixel is discarded if the
ncw z ~aluc  is larger than the stored one.

current block pointer

n-n I

i

‘-~-lirw header

block header

e
Figure 5. The data structure for the sparse output image
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The binary-tree merge algorithm described in [1] is u,scd in the whole earth renderer as
well, with a few changes. In [1], the data to be swapped from processor to processor was
in contiguous memory. This is clearly not the case with a linked-list implementation.
Early versions of the whole earth renderer packed the pixel blocks to bc swapped into a
buffer; after swapping, the blocks were unpacked into a linked list, and the partial images
were merged. The pixel blocks were allocated from the heap, using rnulloco.  Significant
time overhead was associated with the packing/unpacking, and with block allocatiotide-
allocation. The current implementation greatly reduces this overhead.

After all input data has been read, a single large block of memory is allocated from the
heap to stem the sparse output structure. Further allocation from this block is handled by
the nmdcmr itself. A memory map of the block  is shown in Figure 6. At the bottom of
the block is the line pointer array. The top of the block is reserved as a communications
transfer area. Pixel blocks are allocated in between, just after of the line pointer array. A
pixel block allocation involves nothing more than incrementing tic block pointer. All
pixel blocks can bc de-allocated by resetting the block pointer. Thus, allocation/de-
allocation overhead is minimiz~d.

At each step of the binary tme merge, half of the image lines (and thus, on average, half
of the pixel blocks) on each processor must be swapped with another processor. The
blocks to be transferred must be packed into a contiguous block of memory. This is
accomplished by sorting the pixel blocks in the block area. After the sort, the blocks for
the lines which remain on the processor are at the bottom of the pixel block area; the
blocks to be swapped are above thcm. Since linked lists link the blocks in sorted order,
they can be sorted into contiguous memory in linear time. This is no slower than packing
into a buffer, and requires no additional memory.

When the sets of pixel blocks arc to be swapped, each processors writes its set into the
transfer area on its neighbor, along with a vector containing the number of pixel blocks
on each image line. With this information, the receiving processor can merge the blocks
into its own data structure without any unpacking. Thus, the pack.inglunpacking  time is
minimized.

Transfer area
A Transfer area base

Block area

—
Block 1

I Block O

ILine pointer array

-- - -  Block pointer

* Block area base

~ Output area base

Figure 6: Output Area Memory Map

-11-



2.7 Multiple Dataset Rendering

The cut-rent version of the whole earth renderer is capable of loading multiple datasets at
different nxolutions,  rendering them, and compositing the output. For example, the
renderer can overlay a global geology map and high-resolution terrain insets on top of a
global mosaic of the planet Mars. Each dataset consists of an RG13  image of some
planetary region in cylindrical or sinusoidal projection, with a single underlying digital
elevation model.

Input decomposition is as described above. Each dataset is tiled and distributed
cyclically to the parallel processors. The input datasets are processed sequentially on
each processor, and the final image is composite in parallel.

As with the single dataset case, the sparse output structure is an array of output image
lines, each of which is represented as a linked list of pixel blocks. Each output pixel in
the pixel block is an m x 4-tuple, containing one (r,g,b,z)  four-tup]c  for each of the m
input datasets. Thus, all datascts  arc rendered into a single sparse output structure, but a
separate output image is rendered for each. The sparse output structure is merged using
the same binary-tree merge algorithm used in the simple ca..e.

After merging, the m images must bc combined or cornposited into a single output image.
This could be done in several ways, depending on the specific application. For example,
it is possible to do Z-buffering for hidden surface arbitration between the datasets since
the Z-buffer values have been preserved for each image.

The current implementation assumes that the datasets  are to be overlaid one on top of the
previous. Therefore, the final output image can be compositcd in a back-to-front order
using an OVER operator as in (9):

Co=(l-pn).  ci+pn. cn
(9)

Po=(l-Pn)” Pi+Pn

where c denotes the color, p denotes the opacity, o denotes the combined output, i
denotes what is already combined and n is the new point. The opacity of a given dataset
can be adjusted interactively from the GUI. If opacity of the top dataset is 1.0, the top
most image is completely opaque; the images in the back only show through in those
areas where the top image has no pixels. This compositing technique is based on the
assumption that the multiple imaging datasets are mapped to the same digital terrain.

3. RIVA System Overview

The whole earth renderer can be used in batch mode, but its primary use is as one of the
two main software componenfi  of the Remote Interactive Visualization and Analysis
(RIVA) system. As dcpictcd in Figure 1, RIVA allows a user to explore a large planetary
dataset (or datasets) intcractivcly, flying around the dataset using a graphical user
interface (GUI). The GIJI is the second of the two main software components. The
whole earth renderer runs on a massively parallel machine, such as a Cray T3D or an
Intel Paragon. The GUI, called the SpaceFlyer, runs on a Silicon Graphics workstation
with texture map hardware, such as an SGI Onyx.

The SpaccFlycr, which is based on SGI’S OpenInventor system, is used to navigate
around a very low-resolution copy of the planetary dataset.  Viewpoints are continually
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sent to the renderer over a standard Internet TCPflP connection. The renderer produces
images of the terrain as seen from the viewpoints, and sends thcm to a HiPPI (High
Performance Parallel Interface) frame buffer. The frame buffer is typically adjacent to
the user’s workstation. As explained in the Introduction, the CASA gigabit photonic
network is the medium for the long haul communication; the x-e conversion to HiPPI
protocol is done to be compatible with commercial workstation and framebuffer
interfaces.

In addition to viewpoints, the Spaceflyer can send a variety of commands to the renderer.
The user can vary the terrain’s vertical exaggeration, and control the display of multiple
datasets.  Rendering of individual datasets can be enabled and disabled; this allows the
user to increase the frame rate by disabling any loaded datasets not of immediate interest.
Composition parameters (e.g., opacity) can also be set.

The SpaceFlyer also provides a simple animation capability. While flying about the
dataset, the user can save and edit a sequence of flight path control points. Upon user
request, the SpaceFlycr splines a complete flight path (30 viewpoints per second of
animation) along the sequence, using cubic spline  interpolation. The flight path can be
previewed in the SpaceFlyer, and saved to a file for later rendering in batch mode.
During the preview, the viewpoints are sent to the renderer, which will render and display
approximately every 15th viewpoint. (Preview takes place at the maximum speed of the
workstation, and is generally less than 30 viewpoints per second.) While simple, this has
proved both effective and convenient: animation planning can be conducted at the full
resolution of the renderer.

4. Timing Results

4.1 Renderer Implementation

The whole earth renderer works on both the Intel Paragon supcrcomputers and the Cray
T3D Massively Parallel Processors. The Intel Paragon at the Caltech  Concurrent
Supcrcomputing  Consortium (CCSC) has512 computing nodes with 32 Mbytes memory
per processor. Each i860 processor in the Paragon has a peak performance of 75 Mflops
for 64-bit arithmetic. The nodes are conneeted in a two-dimensional mesh with 200
megabytes per second hi-directional bandwidth. The compute nodes provide an
aggregate peak speed of 38.4 gigaflops and a total of 16.4 gigabytcs  of memory. The
Cray T3D MPP at JPL has 256 Processing Elements (PEs). Each PE in the Cray T3D
consists of a DEC Alpha microprocessor with a peak performance of 150 Mflops and a
64 Mbytes DRAM memory. The PEs are conneeted  by a bi-directional 3-D torus system
interconnect network with 300 megabytes per second bi-directional bandwidth. The
aggregate peak performance and total memory capacity of the JPL 256 PE Cray T3D is
exactly the same as the CCSC 512 node Intel Paragon.

The renderer is written completely in C. For inter-processor communication it uses the
NX library on the Intel Paragon and the shared memory library (shmem_put,  shmem~et)
on the Cray T3D. The renderer runs either m a batch program or interactively with the
Spaceflyer GUI. A gateway program is used to provide the interface between the renderer
and the network or other I/O devices. On the T3D the gateway program runs on its front-
end YMP processor; while on the Paragon, the gateway runs on a separate compute node.
The existence of the gateway program allows the renderer to be independent of the
network interface and also introduces pipelining  parallelism between the rendering
process and the I/O processing.



4.2 Datasets

Two remote imaging datasets were used for the timing runs: the Southern California
desert and the planet Mars. In addition, the T3D code was also run with a global Geology
map and a high-resolution inset of the ArEs Vallis and Tiu Vallis regions on top of the
Mars datasct.  All datasets consist of an RGB image and a co-registered 16-bit digital
elevation model.

Southern California Desert

This datasct covers a region stretching from San Bernardino north to central Nevada at a
resolution of 30 meters. The RGB image was produced by the Landsat Thematic
Mapper, and includes three of the seven Thematic Mapper bands. The digital elevation
was provided by the U.S. Geological Survey. The dataset is 17,420 rows by 7,435
columns, or 31,941 65x65-pixel tiles. The total size of the datmet is about 645
megabytes. Figure 10 is a high-resolution perspective view of Death Valley with a
vertical exaggeration of 2.

Mars Global Mosaic

This datasct covers the entire surface of the planet Mars at a resolution of one kilometer.
The images making up the mosaic came from the Viking spacecraft which orbited Mars
in the late 1970’s. The mosaic and accompanying digital elevation model were assembled
by the U.S. Geological Survey. The dataset  is 23,040 rows by 11,520, or 41,715 65x65-
pixcl  tiles. Because the data is in a sinusoidal projection, not all of the pixels contain
data; empty tiles arc not included. The total size of the dataset is thus about 842
megabytes. Figure 11 is a high-resolution perspective view of Vallcs Marineris of Mars
with a vertical exaggeration of 5.

Mars Geology Database

This dataset covers the entire surface of the planet Mars at a resolution of four kilometers.
It is a digital map of the surface composition of Mars, assembled by geologists at the U.S.
Geological Survey. The original map was grayscale;  the map was converted to RGB
using an arbitrary RGB palette. Also, a digital elevation model at four kilometers was
averaged down from the DEM used with the Mars Global “Mosaic. The dataset is 5760
rows by 2880 columns, and is also in a sinusoidal projection, yielding 41,685 17x17-pixel
tiles. The total size of the dataset is about 60 megabytes. Figures 12 and 13 show a
global view of Mars before and after overlaying the Mars geology map. The overlay
opacity is 2.0.

Mars Ares-Tiu Mosaic

This dataset covers the Ares Vallis and Tiu Vallis regions of Mars at a resolution of 30
meters. It was assembled by scientists at the Jet Propulsion Laboratory, and is centered
on the proposed landing site for JPL’s Mars Pathfinder mission. The dataset is 6144 rows
by 9750 columns, or 14,688 65x65 pixel tiles. The total size of the dataset is about 237
megabytes. Figure 14 is a close view of Ares Vallis region. The 30-meter data patch was
originally in gray scale, and was colorizcd with the color of the Global Mars mosaic. The
color of the two datascts is not perfectly matched and the boundary of the high-resolution
dataset can be easily seen. In this picture, the opacity of the high-resolution datasct is set
to 1.0.
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4.3 Timing Results

Timing tests were run on the JPL 256-PE Cray T3D, and on the Caltech 512-node Intel
Paragon. Figure 7 shows the timing results for the Mars and Southern California Desert
datasets, on each machine, using different numbers of processors. Each chart shows the
average number of seconds/frame total and for several subphaws  of the algorithm.
Filtering time is the time spent in calculating horizon filter and grid filter for all the tiles.
Computing time is the time to project the input pixels into the focal plane, rasterize them ~ ~ i,
and perform z-buffer hiclden  surface removal. Merging time is the time to merge the ,!,’
partial output images using the binary-tree merge and combining time is, to collect the
distributed final image and send it out to the gateway processor. In both’ machines, most ~
of the time is spent projecting and rasterization;,  filtering the input tiles and producing the
final frame are consistently small. Filtering spdkds up linearly as processors are added;
combination, being a gather operation, slows down slightly. The binary-tree merge step
scales linearly on the T3D and is small, but is significant on the Paragon, due to the
higher intra-node communications time.

Figure 8 compares the T3D and Paragon results directly. For this application, we
consistently get about twice the performance from the T3D for the same number of
processors; given the relative performance of the Alpha and i860  processors, this is quite
reasonable. Allowing for the difference in processor speeds, the algorithm performs
comparably on both machines. The program scales well first with about 8070 efficiency,
but decreasing to 40% at their largest configuration for both machines. The major cause ,,,
for decreasing efficiency is that the load on each processor gets more unbalanced when
fewer tilers are computed locally with increasing number of processors. On the T3D, the
program speeds up about four times when number of PEs increases from 32 to 256. On
the Paragon, we also see about four times speed up by increasing number of nodes from
64to512. The total frame rate is about 2.5 frames/second on 256 PE T3D and 2
frames/second on 512 node Paragon.

Figure 9 charts seconds/frame vs. frame size on the T3D using 12,8 processors. The
frame sizes quadruple from left to right, so the increase is mom nearly linear than it
appears. The binary-tnx  merging and image combining steps increase slightly with the
larger frame sizes, but the largest increase is due to painting the output pixels.

We also compared the timing difference between single-dataset rendering and multiple-
datasct rendering. With a fixed output frame sire,  the rendering time increases with the
total sim of the input datasets, which implies that the time for compositing the final
image from the multiple datasets is negligible. The single datasct wc used was the Mars
Global Mosaic; the multiple dataset case was Mars global mosaic added with the Mars
geology map and the Ares Vallis/Tiu Vallis high-resolution inset. The rendering time for
the three datasets is consistently about 5090 longer than for the single dataset; as the three
datasets contain 1.5 times as many tiles.
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5. Conclusions

The RIVA system described in this paper enables the interactive exploration of very large
earth and planetary datasets which are far beyond the memory and the CPU capacities of
the fastest workstations. The RIVA system allows investigators to explore their datasets
from different perspectives, at different levels of detail, and even using multi-
phenomcnologies. The whole earth renderer was designed to be scalable to very large
datasets and very large MPP machines. The interleaving tile decomposition results in a
reasonably good load balancing and the sparse output image structure minimizes the
inter-processor communication overhead. The filtering and pyramiding techniques
reduce the amount of computation to be more or less independent of the total size of the
input data.

Although the current frame rate of the whole earth mmderer is fast enough to meet our
interactive exploration goals, additional speed-up is always desirable. As can be seen by
the timing figures, the bottleneck of the current implementation is in computation: input
pixel  projection, rasterization and z-buffer arbitration. The rasterization and z-buffer
arbitration time is almost three times longer than that of projection. More detailed
inspection of the current rasterization mechanism is needed for more specdup.  The load
balancing becomes poor when the viewpoint is very close to the terrain and the focal
plane is painted by only a few tiles. A dynamic load balancing scheme that subdivides
the input tiles and redistributes them is under investigation.

But the primary thrust of R] VA-development now is towards making the system more
useful to the scientist. To this end wc are undertaking the following treks: 1. we are
extending the renderer to support additional kinds of planetary data, such as the
transformations and combinations of all seven bands of Landsat TM data, 2. we are
extending the GUI and GUI-renderer interface to give the user additional control over the
renderer and to provide additional information about the data to the user, and 3. we are
examining ways of delivering the rendered images across slower network connections.
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Figure 10. A 3-D Perspective View of Death Valley rendered from tie Southern
California Desert Landsat dataset



Figure 11. A 3-D Perspective View of Vanes Manneris  of Mars rendered from the
USGS Mars global color mosaic.



Figure 12. A global view of Mars centered at the Ares Vallis  and Tiu Vallis regions



Figure 13. A golbal  view of Mars wifi an overlay of the Mars geologic map.



Figure 14. Ares Val]is of Mars, rendered with a so meter resolution patch on top of
the Mars global color mosaic.


